Internet of Things

We will use standard weather and news information from weather.com and NEW API websites.

and as well, will use implanted IOT sensors to capture vision, density, temperature, moisture, sound and activities. Sensors

density / vision

Capturing crowd density varies case by case. For example, In case of, organized gatherings like Theme parks, concerts etc. number of people attending the event can be predicted in advance.

However, at the same, number of people entering, leaving and present at a given time is very important. Most of the chaos, happens when too many people appear at a place at the same time. for example, people entering / leaving premises.

Sensors Sensors

Reference

other option is, Density will calculated using vision AI, captured through a motion camera / CCTV footage.

Sensors


visibility

Brightness

Sensors


temperature

Outside temperature

Sensors

##############################################
# outdoorTemp
##############################################
using DataFrames, CSV, Dates, Distributions
sampleSize = 365
weatherDF = DataFrame(
    cityid = 1:1:sampleSize,
    state = rand(["LA","LA","FL"], sampleSize),
    indoorTemp = rand(64:1:94, sampleSize),
    outdoorTemp = rand(54:1:104, sampleSize),
    wind = rand(5:1:30, sampleSize),
    humidity = rand(30:1:70, sampleSize),
    precipitation = rand(0:1:5, sampleSize)
    )
first(weatherDF[:, [:cityid, :state, :outdoorTemp]], 10)

10 rows × 3 columns

cityidstateoutdoorTemp
Int64StringInt64
11LA94
22FL101
33LA87
44LA98
55LA85
66LA62
77LA70
88FL74
99LA102
1010FL103

Inside temperature

Sensors

##############################################
# outdoorTemp
##############################################
using DataFrames, CSV, Dates, Distributions
sampleSize = 365
weatherDF = DataFrame(
    cityid = 1:1:sampleSize,
    state = rand(["LA","LA","FL"], sampleSize),
    indoorTemp = rand(64:1:94, sampleSize),
    outdoorTemp = rand(54:1:104, sampleSize),
    wind = rand(5:1:30, sampleSize),
    humidity = rand(30:1:70, sampleSize),
    precipitation = rand(0:1:5, sampleSize)
    )
first(weatherDF[:, [:cityid, :state, :indoorTemp]], 10)

10 rows × 3 columns

cityidstateindoorTemp
Int64StringInt64
11FL67
22LA82
33LA78
44FL93
55LA94
66FL76
77FL81
88LA79
99LA70
1010FL94

moisture

Sensors

##############################################
# moisture
##############################################
using DataFrames, CSV, Dates, Distributions
sampleSize = 365
weatherDF = DataFrame(
    cityid = 1:1:sampleSize,
    state = rand(["LA","LA","FL"], sampleSize),
    indoorTemp = rand(64:1:94, sampleSize),
    outdoorTemp = rand(54:1:104, sampleSize),
    wind = rand(5:1:30, sampleSize),
    humidity = rand(30:1:70, sampleSize),
    precipitation = rand(0:1:5, sampleSize)
    )
first(weatherDF[:,[:cityid, :state, :humidity]], 10)

10 rows × 3 columns

cityidstatehumidity
Int64StringInt64
11LA33
22LA59
33LA68
44LA47
55LA49
66LA40
77LA32
88LA55
99LA33
1010LA31

sound

Sensors

##############################################
# Noise / sound
##############################################
using DataFrames, CSV, Dates, Distributions
sampleSize = 365
weatherDF = DataFrame(
    cityid = 1:1:sampleSize,
    state = rand(["LA","LA","FL"], sampleSize),
    indoorTemp = rand(64:1:94, sampleSize),
    sound = rand(54:1:104, sampleSize),
    wind = rand(5:1:30, sampleSize),
    humidity = rand(30:1:70, sampleSize),
    precipitation = rand(0:1:5, sampleSize)
    )
first(weatherDF[:,[:cityid, :state, :sound]], 10)

10 rows × 3 columns

cityidstatesound
Int64StringInt64
11FL86
22LA76
33LA90
44FL69
55FL83
66LA103
77LA63
88FL59
99LA59
1010LA69

activities

motion activities

Sensors

##############################################
# motion activities
##############################################
using DataFrames, CSV, Dates, Distributions
sampleSize = 365
weatherDF = DataFrame(
    cityid = 1:1:sampleSize,
    state = rand(["LA","LA","FL"], sampleSize),
    indoorTemp = rand(64:1:94, sampleSize),
    sound = rand(54:1:104, sampleSize),
    shadows = rand(5:1:30, sampleSize),
    humidity = rand(30:1:70, sampleSize),
    precipitation = rand(0:1:5, sampleSize)
    )
first(weatherDF[:,[:cityid, :state, :shadows]], 10)

10 rows × 3 columns

cityidstateshadows
Int64StringInt64
11FL29
22LA8
33LA8
44LA29
55LA28
66LA29
77FL11
88LA24
99FL19
1010LA14

news